Cours sur les fonctions affines
cours sur les fonctions affines – troisième
Fonctions Affines
exemple : le prix de location d’une voiture est de 20 euros puis de 0,10 euro du kilomètre effectué. On peut alors compléter letableau suivant : nombre de kilomètres parcourus 100 120 250 320 500 prix payé (euros) 30 32 45 52 70 Lorsque l’on parcourt x kilomètres, le prix y vaut : y = 0,10 x + 20
I. Définition
Etant donné deuxnombres réels a et b, le procédé qui à tout nombre x fait correspondre le nombre ax + b s’appelle une fonction affine. On note : x ax + b (qui se lit ‘qui à x associe le nombre ax + b’) On dit que ax+ b est l’image de x. Cas particuliers : les fonctions linéaires sont un cas particuliers des fonctions affines. En effet, si b = 0, alors la fonction s’écrit : x ax Dans le cas où a = 0, la fonctions’écrit : x b. C’est une fonction constante.
II. Représentation graphique
La représentation graphique de la fonction affine x a est le coefficient directeur de la droite, b est l’ordonnée àl’origine. ax + b est la droite d’équation y = ax + b.
exemple : Traçons la représentation graphique de la fonction f(x) = 2x + 6 f est une fonction affine, sa représentation graphique est la droite(d1) d’équation y = 2x + 6 Comme f(?2) = 2×(?2) + 6 = ?4 + 6 = 2, alors (d1) passe par le point de coordonnées (-2; 2). Comme f(1) = 2×1 + 6 = 2 + 6 = 8, alors (d1) passe par le point de coordonnées (1;8). (en vert sur le dessin) Traçons la représentation graphique de la fonction g(x) = ?x + 3 g est une fonction affine, sa représentation graphique est la droite (d2) d’équation y = ?x + 3. Comme g(3)= ?3 + 3 = 0, alors (d2) passe par le point de coordonnées (3; 0). Comme g(?1) = ?(?1) + 3 = 1 + 3 = 4, alors (d2) passe par le point de coordonnées (-1; 4). (en rouge sur le dessin) Traçons lareprésentation graphique de la fonction h(x) = x h est une fonction linéaire, sa représentation graphique est la droite (d3) d’équation y = x. Elle passe par O. Comme h(3) = 3, alors (d3) passe par le…