Cyclones
Structure
There are a number of structural characteristics common to all cyclones. As they are low pressure areas, their center is the area of lowest atmospheric pressure in the region, often known in mature tropical cyclones as the eye. Near the center, the pressure gradient force (from the pressure in the center of the cyclone compared to the pressure outside the cyclone) and the Coriolisforce must be in an approximate balance, or the cyclone would collapse on itself as a result of the difference in pressure. The wind flow around a large cyclone is counterclockwise in the northern hemisphere and clockwise in the southern hemisphere as a result of the Coriolis effect. (An anticyclone, on the other hand, rotates clockwise in the northern hemisphere, and counterclockwise in the southernhemisphere.)
Formation
The initial extratropical low pressure area forms at the location of the red dot on the image. It is usually perpendicular (at a right angle to) the leaf-like cloud formation seen on satellite during the early stage of cyclogenesis. The location of the axis of the upper level jet stream is in light blue.
Cyclogenesis is the development or strengthening ofcyclonic circulation in the atmosphere (a low pressure area). Cyclogenesis is an umbrella term for several different processes, all of which result in the development of some sort of cyclone. It can occur at various scales, from the microscale to the synoptic scale. Extra tropical cyclones form as waves along weather fronts before occluding later in their life cycle as cold core cyclones. Tropicalcyclones form due to latent heat driven by significant thunderstorm activity, and are warm core. Mesocyclones form as warm core cyclones over land, and can lead to tornado formation. Waterspouts can also form from mesocyclones, but more often develop from environments of high instability and low vertical wind shear. Cyclogenesis is the opposite of cyclolysis, and has an anticyclonic (high pressuresystem) equivalent which deals with the formation of high pressure areas, Anticyclogenesis.
The surface low has a variety of ways of forming. Topography can force a surface low when dense low-level high pressure system ridges in east of a north-south mountain barrier. Mesoscale convective systems can spawn surface lows which are initially warm core. The disturbance can grow into a wave-like formationalong the front and the low will be positioned at the crest. Around the low, flow will become cyclonic, by definition. This rotational flow will push polar air equator ward west of the low via its trailing cold front, and warmer air with push pole ward low via the warm front. Usually the cold front will move at a quicker pace than the warm front and “catch up” with it due to the slow erosion ofhigher density air mass located out ahead of the cyclone and the higher density air mass sweeping in behind the cyclone, usually resulting in a narrowing warm sector. At this point an occluded front forms where the warm air mass is pushed upwards into a trough of warm air aloft, which is also known as a trowal.
Tropical cyclones form when the energy released by the condensation of moisture inrising air causes a positive feedback loop over warm ocean waters.
Tropical cyclogenesis is the technical term describing the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which mid-latitude cyclogenesis occurs. Tropical cyclogenesis involves the development of awarm-core cyclone, due to significant convection in a favorable atmospheric environment. There are six main requirements for tropical cyclogenesis: sufficiently warm sea surface temperatures, atmospheric instability, high humidity in the lower to middle levels of the troposphere, enough Coriolis force to develop a low pressure center, a preexisting low level focus or disturbance, and low vertical wind…